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We describe a crystal field scheme and mean-field calculation that explains the observed
bulk and microscopic properties of UPd3. We also report a magnetostriction experiment in
applied magnetic field up to 33T, and the observation of a phase transition when the field is
parallel to the a-direction at 27.8±0.5T and at 26.8±0.5T when the field is parallel to the
b-direction. No phase transition at high fields was observed when the field was parallel to
the c-direction.
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I. INTRODUCTION

In addition to the work on UPd3 detailed in this report, I have also worked on several other
systems during my studies to this point. These included experiments on the (U,Th)Ru2Si2 system
where we measured the quasi-elastic peaks in samples with 80%, 60%, 20% and 10% Uranium
in order to support the hypothesis that the hidden order transition in URu2Si2 may be described
by an Anisotropic Kondo Model; on UCuP2, a Uranium ferromagnet where we measured the high
temperature crystal field excitations; and on Lu2V2O7, a ferromagnetic semiconductor where we
measured the high energy excitations, looking for the semiconductor band-gap and the crystal field
transitions. The above experiments were all conducted on the High Energy Transfer (HET) chop-
per spectrometer at the ISIS facility. We also have an on going project to study the ordered phase
excitations in PrB6, which shows antiferromagnetic ordering with an incommensurate wave vector
below 7K, and again with a commensurate wavevector below 4.2K. Extensive measurements of the
excitations in the commensurate phase were taken on the V2 triple-axis spectrometer at the Berlin
Neutron Scattering Centre (BENSC), and further measurements in the incommensurate phase and
in an applied magnetic field are planned. Finally, I have also been involved with experiments at
the Institute for Transuranium Elements (ITU) on PuPd3, measuring the photo-electron spectra,
magnetisation and specific heat. However, this report will focus on UPd3, the system that I have
spent the most time studying over the past year.

Uranium palladium-3 is a well studied uranium intermetallic compound which exhibits four
phase transitions below 8K. These transitions arise from the ordering of the quadrupole moments
of the 5 f 2 electrons on the quasi-cubic uranium sites. UPd3 crystallises in the double hexagonal
closed packed (dhcp) TiNi3 (D024) structure [1]. Thus, the uranium atoms occupy alternately sites
of locally hexagonal and quasi-cubic symmetry, equivalent to a stacking of ABAC.

The first magnetisation measurements performed on polycrystalline UPd3 were conducted by
Wernick et al. in 1965 at Bell Labs [2], and showed that the compound did not order magnetically.
These and subsequent bulk property measurements, including resistivity [3] and electron spin
resonance (ESR or EPR) of Gd in UPd3 [3, 4], were initially interpreted using a band structure
picture, and assumed that the uranium ions were itinerant. In order to explain the data, a very
narrow 5 f band was postulated. However, later measurements of the specific heat using single
crystals by Andres et al. [5] in 1978, and triple-axis neutron spectroscopy by Buyers et al. [6] in
1980, showed that the uranium ion is in fact well localised, with a 5 f 2 configuration, corresponding
to a valence of 4+. The phase transitions were also first observed by Andres et al. at 7K and 6K.

Further bulk measurements on the thermal expansion [7, 8], magnetostriction [8], and elastic
constants [9] refined the transition temperatures to T1 = 6.8K and T2 = 4.5K, and showed that both
transitions are structural, but that the second also has a magnetic component. In addition, another
transition above T1, at T0 ≈ 7.8K was revealed in further heat capacity [10], magnetisation [11, 12]
and ultrasound [13] studies. Finally, the ultrasound studies also revealed that the T1 transition is
actually two transitions, a second order transition at T+1 = 6.9K, and a first order transition at
T−1 = 6.7K.

The structural nature of the transition at T1 was confirmed by polarised neutron diffraction
(PND) by Steigenberger et al. in 1992 [14]. The authors observed superlattice reflections, at Q
= (1

2 ,0,3) and (1
2 ,0,4), below T1 with a non-spin-flip cross-section when the neutron was polarised

parallel to the scattering vector. The PND experiment also showed that the magnitude of the
ordered magnetic moment was extremely small, ≈ 10−2µB/U-ion. Further PND experiments [15]
in an applied magnetic field of ≈ 4T , along with a group theoretical analysis [16], determined that
the quadrupolar order parameter below T0 is Qx2−y2 .
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X-ray resonant scattering (XRS) studies by McMorrow et al. [17] observed the quadrupolar
order directly for the first time in 2001. The XRS study appeared to agree with PND data below
T0, with the Qx2−y2 structure giving a non-zero signal in the (π−π) channel for the (1,0,3) re-
flection as observed. Data below T1 showed that the (σ− π) channel dominates in the (1,0,4)
reflection which may be explained by a rotation of the charge densities. However, follow-up XRS
experiments [18, 19] using azimuthal scans showed conclusively that the order parameter below
T0 is Qzx.

This result may be reconciled with the earlier data if the primary order parameter, Qzx, also
induces a secondary order parameter Qx2−y2 . Thus, in the PND experiments when a magnetic field
is applied parallel to the real space a-direction, it will only induce antiferromagnetic moments
aligned parallel to field for the Qx2−y2 case and not for the Qzx case [20].

In addition, inelastic neutron experiments conducted below T2 by McEwen et al. [21] revealed
four excitations below 3meV. Two of these decrease in intensity until they disappear above T2, and
above T1 only one mode remained, which eventually dies off above T0. A mean-field model involv-
ing antiferroquadrupolar (AFQ) ordering on the uranium cubic sites was proposed to explain these
modes [12]. Previous x-ray scattering measurements indicated that the low temperature crystal
structure has four inequivalent quasi-cubic sites based on the orthorhombic unit cell, forming four
different sublattices. In the mean-field model, the two order parameters below T2, Qx2−y2 and Qzx
combine in different combinations in each of the four sublattices, giving rise to different splittings
of the quasi-cubic ground state doublet. Thus each sublattice gives rise to a different transition in
the inelastic neutron spectra.

Finally, there have also been angle-resolved photoemission spectroscopy studies [22] and x-
ray diffraction studies under high pressure [23]. There is thus a large body of experimental work
on UPd3. However, there is still no satisfactorily comprehensive microscopic understanding of
the phenomena observed. In part to rectify this we have completed some mean field calculations
aimed at explaining both the bulk properties observed and the scattering data. This is described in
section III. First, though, a satisfactory crystal field scheme needed to be established, as the single
ion crystal field interaction is much stronger than the inter-ion interactions (magnetic, quadrupo-
lar, etc) which drives the ordering, and this is detailed in section II. Finally, we also describe a
magnetostriction experiment at high magnetic fields in order to probe the high field behaviour and
to verify our model, in section IV.

II. CRYSTAL FIELD INTERACTIONS

The Uranium ion in UPd3 is well localised with a valence of 4+ and a Hund’s rule 3H4 spin-
orbit ground state configuration. In addition, whilst the crystal field (CF) interaction in UPd3 is
stronger than in rare earth intermetallics, it is still weaker than the spin-orbit interaction, so that
we may still treat it as a perturbation which splits the spin-orbit ground state. The symmetry of the
double hexagonal close packed (dhcp) structure means that there are two inequivalent sites, and
hence two different CF splittings. The quasi-cubic site is split by a trigonal crystal field (quantised
along the hexagonal c-axis, rather than along the tetragonal axis), resulting in six levels (three
singlets and three doublets), whilst the hexagonal sites are split into another six levels (also three
singlets and three doublets).

Figure 1 shows the TiNi3 structure of UPd3, with the neighbouring Palladium ions around each
hexagonal and quasi-cubic Uranium sites highlighted. Using these ionic positions, a point charge
calculation was used to determine the signs of the applicable crystal field parameters given these
symmetry. The results are summarised in table 2.
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FIG. 1: The TiNi3 structure. The fractions beside each atom indicates the z-coordinates. Uranium quasi-
cubic sites are shown in black, hexagonal sites in grey. The Palladium ions neighbouring the quasi-cubic
Uranium ions are shown in red, whilst those neighbouring the hexagonal sites in green. Also shown is the
hexagonal unit cell, and the orthorhombic unit cell as used in reference [16] and subsequent papers.
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FIG. 2: Point charge calculations crystal parameters. ’+’ and ’-’ indicates that the point charge calculations
show that the crystal field parameters should be greater than or less than zero respectively.
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However, these point charge calculations usually give a singlet ground state for both Uranium
sites, as noted by Buyers et. al. [6], whereas we now believe that the quasi-cubic sites have
a doublet ground state, as deduced from specific heat measurements at low temperatures [12].
Nevertheless, the point charge calculations can give a good indication of the sign of the crystal
field parameters.

In addition, because we now know that the quadrupolar order parameter for the phase below
T0 is Qzx from the XRS data, we also have a restriction on the wavefunction of this quasi-cubic
doublet ground state. This follows from the mean-field Landau theory of phase transitions, because
the eigenvalues of the Qzx operator are not the same if we change the operator from Qzx to −Qzx.
Thus in the Landau free energy expansion in terms of the order parameter, we require terms up to
third order, that is in Q3. There are thus two minima in the free energy as a function of the order
parameter at constant temperature, and at the transition temperature the global minima (that is the
equilibrium value of the order parameter) discontinuously change from one of the minima to the
other (that is zero above the transition temperature, and finite below it), indicating a first order
phase transition. However, all experimental observations so far indicate that the transition at T0 is
second order, or at best, very weakly first order. Thus we need to restrict the matrix element of
Qzx to ensure that its eigenvalues are the same for Q as for −Q, so that the free energy expansion
needs to only include up to quadratic terms.

Expressing the Qzx operator in matrix form with the three lowest states of the quasi-cubic sites
(see reference [12] for details), the doublets |d1〉 and |d2〉 and singlet |s〉, as basis states, we get:

Q̂zx =

 0 A′ A′

A′ 0 B′

A′ B′ 0

 (1)

In order to ensure that the eigenvalues of Q̂zx is the same as −Q̂zx we need the matrix element
B′ = 〈d1|Qzx|d2〉 = 〈d2|Qzx|d1〉 to be approximately zero. The wavefunctions of the ground state
doublet expressed in terms of the eigenstates of the J,Jz operators as:

|d1〉 = a|4〉+b|1〉+ c|−2〉 (2)
|d2〉 = a|−4〉−b|−1〉+ c|2〉

Thus the above requirement for the matrix element B′ means that the product bc ≈ 0.

A. Inelastic Neutron Data

Extensive triple-axis spectrometer (TAS) data were taken at the ILL by Alberto Martin-Martin
and Keith McEwen [24] which revealed the dispersion of the CF modes in UPd3. In addition, we
have also recently measured the inelastic excitations at 60K and 160K so as to thermally occupy
the 15meV excited doublet on the hexagonal sites in order to determine the hexagonal site CF
splitting. These measurements were made on a 50g powder sample on the HET spectrometer at
the ISIS facility.

Figure 3 shows a scan from the ILL data at Q = (2.5,0,0) at 10K showing the crystal field
excitations with fitted lorentzians. The data is well fitted by five lorentzian peaks, which apart
from the large peak at 16.7meV are attributed to transitions from the quasi-cubic doublet ground
state to its excited state. These energies will be used to fix the crystal field parameters on the
quasi-cubic sites.
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FIG. 3: Inelastic neutron spectra from reference [24]. The solid lines show the fit to the data using five
lorentzian peaks, with centres at: 4.05meV, 9.72meV, 12.3meV, 16.76meV, 20.41meV.
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FIG. 4: Inelastic neutron spectra from HET. The scans were taken with 50meV and 23meV incident energy.
The left panel shows data from 10K, which shows the peaks previously seen in figure 3, and also an addi-
tional broad peak at approximately 30meV energy transfer. Solid lines on the right panel indicates a scaling
of the 10K, 16meV peak by the Boltzmann factor to account for the thermal population of the hexagonal
states, keeping background, peak position and width constant.
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Figure 4 shows scans from the HET data at various temperatures. The large peak at 16meV
energy transfer was first observed by Buyers et. al. [6] and attributed to the transition from the
ground state |Jz = 0〉 singlet to an excited doublet with wavefunctions |Jz = 1〉 and |Jz = −1〉.
As the other states on the hexagonal sites do not have wavefunctions with |Jz = ±1〉, there are
no dipole matrix elements connecting them to the ground state, and they are thus not observed by
neutron scattering, unless the temperature is sufficiently high that excited states are populated. The
scaling of this 16meV peak with temperature indicates that there are no crystal field levels below
≈5meV on the hexagonal sites, as these would have been populated had they exist, and would then
reduce the spectral weight of the 16meV further. However the 160K peak shows that there may be
other levels between ≈5meV and ≈15meV. Nonetheless the observed peak is close to the purely
thermal prediction, indicating that any levels below 16meV would be at the higher energy end.

B. Crystal Field Parameter Fitting

Using the routines in reference [25], a matlab program was developed to calculate the crystal
field (CF) parameters which would give a certain CF splitting. The program is reproduced in
Appendix A, and relies on the orthogonality properties of tensor operators, t(q)

k , within a single
J-multiplet which are composed of the Wigner 3 j symbols:

∑
M1,M2

〈J,M1|t
(q)
k |J,M2〉〈J,M2|t

(q′)
k′ |J,M1〉= 0 if k 6= k′,q 6= q′ (3)

The appendix also details the derivation of the relationship between the crystal field parameters
and the energy and wavefunctions resulting from diagonalising a Hamiltonian with such parame-
ters:

Bq
k = ∑

n
∑

M1,M2

En|Vn〉〈Vn|〈J,M1|Oq
k |J,M2〉

/
∑

M1,M2

〈J,M1|Oq
k |J,M2〉〈J,M2|Oq

k |J,M1〉

= ∑
n

∑
M1,M2

En|Vn〉〈Vn|〈J,M1|Oq
k |J,M2〉

/
Tr
(

Ôq
k

[
Ôq

k

]T) (4)

where the En and |Vn〉 denotes the eigenvalues (energies) and eigenvectors (wavefunctions) of the
crystal field Hamiltonian, |〉〈| indicates an outer product, and Ôq

k the operator matrix.
Thus in fitting to the energy splitting, En, the algorithm used relies on finding a set of CF pa-

rameters, Bq
k , from an initial set of wavefunctions, |Vn〉, using this new set of CF parameters to

generate a new set of wavefunctions, and then iteratively feed this back until the energies (eigen-
values) generated are close to the desired values. However, this means the algorithm does not
fit the wavefunctions, only the energy. Thus, it was used initially to fit to the energies observed
using the neutron spectra shown above, and subsequently the parameters were altered by hand to
produce the desired wavefunctions.

It was noted above that the symmetry of the order parameter below T0 required that the product
of the coefficient of the doublet ground state wavefunction bc≈ 0. In addition, it was observed that
the susceptibility in the x-direction increases below each quadrupolar phase transitions rather than
decreasing as would be expected for magnetic ordering. On ordering, some of the first excited
singlet state on the quasi-cubic site is mixed in with the doublet ground state, and this would
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FIG. 5: Parameters used. The upper panel shows the crystal field parameters in Stevens normalisation in
meV. The lower panel shows the quadrupolar exchange parameters in meV.

enhance the van-Vleck susceptibility of the ordered state if the singlet state has a strong Jx coupling
with higher excited states. The singlet states have wavefunctions:

|s1〉 = d|3〉+ e|0〉−d|−3〉 (5)
|s2〉 = d′|3〉+ e′|0〉−d′|−3〉 (6)

|s3〉 =
1√
2

(|3〉− |−3〉) (7)

From fitting to the energy levels using the algorithm described, it was determined that the first
excited singlet state at ≈4meV had the form of |s1〉 with d ≈ 0 and e ≈ 1, whilst the excited
doublet above it at ≈10meV is of the form a′|4〉+ b′|1〉+ c′|− 2〉 but with b′ ≈ 1. Thus in order
to ensure an increase in the x-direction susceptibility we need that the ground state doublet have a
weak coupling Jx with the first excited state as well, which would be satisfied if we chose b ≈ 0,
for equations 2.

These requirements were met with the crystal field parameters in table 5. It should be noted
that the values for B0

2 for both sites agree with magnetisation data taken on the D3 diffractometer
at the ILL, where the crystal field anisotropy can be estimated from the susceptibility parallel to
and perpendicular to the applied field. Finally, figure 6 shows the resulting crystal energy splitting
and wavefunctions.

III. MEAN FIELD CALCULATIONS

We used the McPhase program [26] to calculate self consistently the mean field Hamiltonian:

H = ∑
i

[
H i

CF +HZ −
1
2 ∑

j
∑
α

Ji j
α Qi

αQ j
α

]
(8)

where i and j index the sites, and α index the quadrupolar operators Qzx and Qx2−y2 . The crystal
field Hamiltonians are:

H quasi−cubic
CF = ∑

k=2,4,6
B0

kO0
k + ∑

k=4,6
B3

kO3
k +B6

6O6
6

H hexagonal
CF = ∑

k=2,4,6
B0

kO0
k +B6

6O6
6 (9)
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FIG. 6: Crystal Field Scheme. Left Panel: The crystal field energy levels and corresponding wavefunction
expressed in the |J,Jz〉 basis. Right Panel: The mixing of the excited states and ground state on the quasi-
cubic site in the lowest temperature ordered phase as calculated in section III.

and the Zeeman Hamiltonian is:

HZ =−gJµBJiH (10)

In our mean field calculations we considered only two quadrupolar couplings: That within the
basal plane between ions 1 and 3, and 2 and 4, and that along the c-axis between ions 1 and 2,
and 3 and 4 (as shown in figure 7), which we shall denote Jab and Jc respectively. In addition,
we only consider the coupling between Qzx and Qx2−y2 quadrupoles, hence we have four exchange
parameters: Jab

zx , Jc
zx, Jab

x2−y2 , Jc
x−y2 . Finally for the present we have ignored the RKKY exchange

interactions, though a complete study must take these into account.
Previous inelastic neutron scattering data below the lowest phase transition, T2=4.4K, showed

that there were four peaks at energy transfers of 1.28, 1.68, 2.20 and 2.60meV [21]. These peaks
probably come from transitions between the ground state doublet on the quasi-cubic sites which
have now been split by the quadrupolar ordering. That there were four peaks observed indicates
that the quadrupolar exchange on different sites split the doublet by different amounts. We can
simulate this behaviour using the four exchange parameters listed above, and after some consider-
ations we found that the parameters listed in table 5 proved a fit to the experimental data. These
parameters yielded transitions at 1.51, 1.93, 1.99 and 2.01meV in the lowest ordered phase, and
two phase transitions at 3.5 and 7K. Unfortunately in order to increase the calculated transition
energies to fit those observed the transition temperature is also raised beyond that which was ob-
served. However, it must be noted that mean field calculations generally overestimate transition
temperatures because they neglect the fluctuations.

The left panel on figure 8 shows the low temperature magnetic susceptibility. The McPhase
simulations shows the same step up in the susceptibility with decreasing temperature at the lower
transition in the x-direction as observed, but not at the higher temperature transition. In addition,
in the z-direction, both calculated transitions show the same features as observed in the data, a
step up then down with decreasing temperature. Unfortunately the magnitude of the calculated
susceptibility does not match the data.
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FIG. 7: Uranium site positions. The hexagonal sites are in red, the quasi-cubic sites in black. The fractions
indicate the z-coordinates, and whole numbers indicate the quasi-cubic site index.

The right panel on figure 8 shows the magnetic contribution to the specific heat as calculated by
McPhase and that which is observed by subtracting the specific heat of the non-magnetic isostruc-
tural compound ThPd3 from that measured on UPd3. The good fit at high temperatures, particu-
larly the close match of the predicted peak in Cmag

p with the data, indicate that the energy levels of
the calculated crystal field split in good agreement with the data. The experimental determination
of the magnetic specific heat also involves some non trivial errors because of the subtraction of the
ThPd3 data from that of UPd3. At higher temperatures this yields a small value for the Cmag

p with
corresponding large errors, and in addition the measurement of the ThPd3 data was completed on a
rather small sample, in which the addenda was a significant fraction of the total measured specific
heat. Thus it is remarkable that we obtained such good agreement between data and model. At
lower temperatures however, the mean field calculations yields two first order transitions rather
than the single first order one that is observed.

Finally, whilst the ordered structure in the lower temperature calculated phase is in agreement
with experimental observation (that is an antiferro-quadrupolar arrangement of Qzx and Qx2−y2

moments), the higher temperature phase structure is more ambiguous. The calculations with the
exchange parameters shown yield a predominantly AFQ structure of Qx2−y2 moments which in-
duced a small AFQ Qzx moment as a secondary order parameter. We believe that on the basis of
using just exchange parameters of the type listed that it would be very hard to stabilise two phases,
one with an AFQ arrangement of both Qzx and Qx2−y2 , and another in which the Qzx moments are
dominant, as is physically observed in the phase between T+1 and T0 in UPd3, because the Qzx
moment is about two orders of magnitude weaker than the Qx2−y2 moment. However, the observa-
tions also indicate that Qx2−y2 is the dominant order parameter in the intermediate phases between
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FIG. 8: Left panel: Low temperature susceptibility and high temperature inverse susceptibility. Right panel:
Specific heat.

T+1 and T2, and experiments have been planned to further resolve the order parameter in these
phases.

IV. HIGH FIELD MAGNETOSTRICTION

Whilst there are a wealth of data at zero applied magnetic fields of the various bulk and mi-
croscopic properties, the field dependence of UPd3 has only been measured up to 12T for the
magnetisation [27], and 7T for magnetostriction [8]. Using inelastic neutron data [24] we were
able to deduce a crystal field scheme [12] which is detailed in section II. This scheme has a ground
state doublet on the uranium sites with locally quasi-cubic symmetry, with an excited singlet 4meV
above the ground state. An applied magnetic field would split the ground state doublet, and lower
the singlet, so that at a certain critical field, a level crossing would occur, resulting in a phase
transition. From the mean field calculations detailed in reference [12], this crossing was predicted
to be with an applied field in the region of 30T.
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A. Experimental Methods

There is thus a need both to explore the behaviour of UPd3 at higher fields than had been
measured, and in particular in the region around 30T where a phase transition is expected. In
November 2005, we were able to measure the magnetostriction of UPd3 up to 33T at the National
High Magnetic Field Laboratory (NHMFL), Tallahessee, Florida. The measurements were made
using capacitance dilatometers constructed by Rotter et al. [28] and mounted in a 4He cryostat in a
33T Bitter resistive magnet cell. Three dilatometers were used: the D-cell, constructed in Dresden
by M. Doerr, the W-cell, constructed in Vienna, and the WP-cell, also constructed in Vienna by M.
Rotter. The W- and D-cells have a diameter of 22mm whilst the WP-cell has a diameter of 20mm.
In addition the WP-cell has a small resistive heater which is controlled by a Conductus LTC-20
temperature controller.

Each cell has its own Cernox resistance thermometer, denoted by RS (serial numbers X09555,
X30533, X11005 respectively for the D-, W- and WP-cells), which is connected to the LTC-20.
The cells were connected by dual-in-line pin and socket connection to a PCB mounted on a sample
stick. On the PCB are mounted another Cernox thermometer, denoted Rc (serial number X31765)
and a capacitance thermometer, denoted CT . These sensors and were connected by gold wires to
a 37-pin DT12 connector into which a coaxial cable attached to a breakout box was plugged. The
dilatometer was connected separately by gold wires to two BNC connectors which plug into an
Andeen Hagerling AH2500A capacitance bridge. The Rc thermometer was connected to a Lake
Shore LS340 temperature controller, and the CT thermometer to an Andeen Hagerling AH2700
capacitance bridge. Unfortunately early in the experiment the AH2700 bridge malfunctioned, and
we were only able to replace it with another AH2500A, which subsequently caused interference
with the bridge measuring the capacitance of the dilatometer because both bridges only operated
at 1kHz. This meant that we were unable to use the CT thermometer.

For measurements, the sample stick was placed inside a sealed can, of outer radius 30mm,
which was then evacuated and filled with 4He exchange gas. Teflon tape was wrapped around the
dilatometer and sample stick to insulate them, and keep stray wires tight against the stick body. In
addition, yellow cryogenic tape was wrapped around the can to electrically isolate it. Care was take
to thermally and electrically isolate the sample stick from the can which is in direct contact with
the liquid 4He. However, because of the small dimensions involved this was not always possible.
This allowed thermal contact between the sample and the cryogenic liquid which caused problems
when we wanted to heat the sample to temperatures above 4.2K. The can and stick assembly was
placed in the cryostat over a long period of time in order to reduce subsequent cooling time and
loss of cryogenic liquid to vaporisation. Figure 9 shows photographs of the dilatometer, stick, can,
and mounting in the cryostat. Figure 10 shows schematic diagrams of the magnet, cryostat and
dilatometer assembly.

The bridge and temperature controllers were connected by an IEEE 488 bus to a PowerMac
G5 computer running LabView with NHMFL-designed data taking software. The software auto-
matically reads the field strength in the magnet from its controlling software with a mean error of
the order of 0.1%. The AH2500A capacitance bridge is also extremely accurate with a nominal
resolution of 5×10−7 pF and accuracy of 1.5×10−7. However, electrical noise in the cables and
connectors from the dilatometer to the bridge, and mechanical vibrations due to the resistive mag-
net cooling water system meant that the resolution was reduced by about two orders of magnitude
with a corresponding loss in accuracy.

During measurements, we observed the expected magneto-resistance of the Cernox temperature
sensors [29]. These introduced corrections into our temperature data, which proved negligible for
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FIG. 9: Photographs of the experimental set up. a) and b) the dilatometer. c) connection between the
dilatometer and sample stick. d) inserting the sample stick into the can. e) mounting the can into the
cryostat

the 4.2K measurements but was significant for high temperatures. In addition, we also observed
a ‘bubble‘ effect where at high fields, the magneto-resistance, and hence inferred temperature, on
ramping up and ramping down the field were not equal, and that at around 18T, there is a jump in
the magneto-resistance on ramping down, after which the ramp up and ramp down curves were the
same. This is occurs because 4He, the cryogen that we used, is diamagnetic, and hence experiences
a force in the z direction proportional to ∂B/∂z. It thus appears that at a critical field of around
18T, the field gradient is high enough to force the cryogen away from the (vertical) centre of the
magnet, creating a bubble around the position of the dilatometer. Since there is no cryogen to cool
the exchange gas directly around the dilatometer it begins to heat up. On ramping down past 18T,
the cryogen suddenly rushes back in to fill the bubble and cools the dilatometer, accounting for the
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FIG. 10: Schematic drawing of experimental set up.

observed jump in magneto-resistance 1.

B. Experimental Results

Table 11 summarizes the data taken. Unfortunately we did not have time to measure fully all
the transverse components, but we were able to measure all three longitudinal and three of the six
transverse components of the magnetostriction tensor. Each component measure was also repeated
once to ensure reproducibility. The raw capacitance data showed a large hysteresis between the

1 Explanation due to James Brookes (FSU)
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Run # Field Length change Temperature Cell Notes
direction direction (K) Name

5 c c 4.2 RW
6 c c 4.2 RW
7 a a 4.2 RD
8 a a 4.2 RD
9 b b 4.2 RWP

10 b b 4.2 RWP Field ramped at 3T/min
11 b b 7.5 RWP
12 b b 6 RWP
13 a c 4.2 RW
14 a c 4.2 RW
17 a b 4.2 RWP
18 a b 4.2 RWP
19 b a 4.2 RW
20 b a 4.2 RW Interference between cap. bridges
22 b a 4.2 RW

FIG. 11: Run list of data taken on UPd3. The applied magnetic field was ramped at 2T/min except where
indicated.

ramp up and ramp down curves. However, this was mostly an artefact, due to eddy currents
induced in the sample. This arises because the sample is not completely regular in shape, and in
particular does not have parallel sides. So, when the field is switched from ramping up to down,
a large turning moment is applied to the sample, which causes it to rotate within the dilatometer
cell. The rotation is usually such that the gap between the plates is less, so a higher capacitance
is measured as a result. The magnitude of the moment, and hence resulting capacitance change is
related to the size of the eddy currents induced and hence the ramp rate. However, time constraints
meant that we could not justify a rate lower than 2 Tesla per minute. Nonetheless we were able to
eliminate this artefact by treating the ramp up and ramp down curves separately and then averaging
between them.

After the data measurements a calibration measurement was completed by manually adjusting
the dilatometer using a micrometer screw and measuring the capacitance. This calibration was
repeated for each cell and was used in the program GCALC, written by M. Rotter, to convert the
measured capacitance to a gap size in nm, using the equations outlined in reference [28]. GCALC
also took into account the thermal expansion of the dilatometer, made out of silver, using data
from the literature [30] and assuming a temperature of 4.2K throughout.

Before the conversion, the measured capacitance was put into bins of size 0.5T, and the data
was separated into ramp up and ramp down field components. The binning was to reduce the
noise in the data due to mechanical vibrations, mostly from the cooling water for the resistive
magnets. The conversion using GCALC was applied to the ramp up and down separately, and
the magnetostriction, ∆l/l was calculated for the ramp up and down. These curves showed some
hysteresis at low fields, with the largest effects in the longitudinal c-direction (H||c, ∆l||c), in
agreement with data in the literature [8]. There is some difference between the ramp up and ramp
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down curves at high fields as well, but this was generally small, and may be partly due to thermal
expansion due to the ’bubble’ effect described above. Thus, we combined the ramp up and ramp
down data into one curve, and average the two runs for each magnetostrictive components.

The data is shown in Figures 12 and 13, showing the longitudinal and transverse components
respectively. From the data, it may be seen that there is a phase transition at 27.8±0.5T when the
field is applied in the a-direction, whilst it is at 26.7± 0.5T when the field is in the b-direction.
There were no phase transitions observed with the magnetic field applied parallel to the c-direction.

Unfortunately the magneto-resistive dependence of our temperature resistor, Rc combined with
the ’bubble’ effect described above, meant that the heater control at temperatures higher than base
temperature was not constant with field. We observed that the heater power was markedly higher
on ramping up than ramping down at the same fields. Thus we were unable to maintain a constant
temperature for the (nominal) 6K and 7.5K scans. Instead we observed large differences between
the ramp up and ramp down curves, which is most likely to be due to thermal expansion due to
the increased heater power on the ramp up. In addition, whereas the magnetostriction at 4K in the
longitudinal b-direction showed that the crystal becomes increasingly compressed at high fields,
the data at 6K and 7.5K appear to show the crystal expanding. However this is mostly like to be
due to thermal expansion. This is supported by the data at low (0-10T) fields which follow closely
the 4K data. It is also interesting to note that we did not observe any high field transitions in the
7.5K data, but there is a suggestion of a transition in the 6K data. However, this is not conclusive

FIG. 12: Longitudinal Magnetostriction of UPd3 at 4.2K. The data has been put into 0.5T bins, and ramp
up and down, and repeated measurements averaged. High field transitions are seen at 27.8± 0.5T in the
a-direction and 26.7±0.5T in the b-direction.
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FIG. 13: Transverse Magnetostriction of UPd3 at 4.2K. The data has been put into 0.5T bins, and ramp
up and down, and repeated measurements averaged. High field transitions are seen at 27.8±0.5T with the
field in the a-direction and 26.7±0.5T in the b-direction.

due to the thermometry problems noted above.

C. Meanfield Calculations

Using the same quadrupolar exchange parameters as in section III, we were able to calculate
the thermal expectation values for the spin and quadrupolar correlation functions, from which the
magnetostriction data may be fitted using:

εαα = ε
CF
αα + ε

EX
αα (11)

ε
CF
αα =

1
N ∑

i

[
Aα〈O0

2〉T,H +Bα〈O2
2〉T,H

]
(12)

ε
EX
αα =

1
N ∑

i
[Kα,zx〈Qzx,iQzx,i〉T,H

+Kα,x2−y2〈Qx2−y2,iQx2−y2,i〉T,H
]

(13)

where i index the U4+ sites, α index the strain directions, and 〈〉T,H indicates the thermal expecta-
tion values, which are calculated by McPhase. The CF and EX label the crystal field and exchange
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FIG. 14: Magnetostriction data (top) and correlation function calculations (bottom). The panels show
from left to right: With field in the a-, b-, and c-directions. The CC and CH in the lower panels indicate
cubic-cubic and cubic-hexagonal site coupling respectively.

contributions respectively. Unfortunately the exchange parameters that we used yielded transitions
at much lower fields than observed in the magnetostriction data. In the a-direction the calculations
yield two transitions at 6.5T and 11.5T, whilst in the b-direction, one transition at 16.5T, and in
the c-direction, at 4.8T. Thus we were unable to obtain any fits to the experimental data with the
current set of exchange parameters. The lower panels on figure 14 shows the calculated thermal
expectation values 〈O0

2〉, 〈O2
2〉, 〈QzxQzx〉, 〈Qx2−y2Qx2−y2〉.

V. CONCLUSIONS

We have presented an analysis of the low temperature behaviour of UPd3, and have deduced a
set of crystal field and mean field quadrupolar exchange parameters which model some features
of the observed behaviour. In addition, we have completed magnetostriction measurements at 4K,
in the lowest temperature order phase, up to 33T. The analysis is still far from complete, and in
particular the crystal field parameters may still be needed to be modified as it does not quite fit the
higher energy inelastic neutron scattering data. The mean field model, calculated with McPhase
however shows much promise and further work to refine it and to include other quadrupolar ex-
change interactions beyond nearest neighbour, and as to include magnetic dipolar exchange inter-
actions is in progress. Within this effort, we will as attempt to model the magnetostriction using
quadrupole-quadrupole correlation functions as described in reference [31].
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APPENDIX A: FITENGY.M

We start with an expression for the single-ion crystal field Hamiltonian, constructed from sum-
ming over the Stevens operators appropriate to the point symmetry of the magnetic ion under
consideration:

HCF = ∑
k

k

∑
q=−k

Bq
kOq

k (A1)

where the sum is only over terms of rank k = 2,4,6, for ions with unfilled outer f-electron shells.
Bq

k denotes the crystal field parameters and Oq
k denotes the Stevens operators. These operators were

exhaustively listed by Stevens himself [32] and others [33]. However, for computational reasons,
we have chosen to calculate the operator equivalent to spherical harmonics due to Buckmaster et
al. [34, 35], rather than the Stevens operators themselves, which are tensor operators equivalent
to tesseral harmonics. This choice facilitates easier computation, but in order to ensure that the
crystal field parameters obtained have the same normalisation as those for the Stevens operators,
we then re-express the Buckmaster operators as Stevens operators:

Oq
k = aq

k [Tk−q +(−1)qTkq] q > 0
O0

k = a0
kTk0

Oq
k = iaq

k [Tk−|q|+(−1)qTk+|q|] q < 0
(A2)

These Tkq operators in turn are constructed in matrix form with matrix elements:

〈J,M1|Tkq|J,M2〉= ∑
k,q

(−1)J−M1

(
J k J

−M1 q M2

)
〈J||T k||J〉 (A3)

where the middle brackets indicate the 3 j symbol and the last term indicates the reduced matrix
elements, whose expression depends on the normalisation chosen for the crystal field parameters.
We have chosen to use the standard Stevens normalisation, so that the reduced matrix element is
given by [36]:

〈J||T k||J〉=
1
2k

√
(2J + k +1)!

(2J− k)!
(A4)

and the coefficients aq
k are tabulated in Rudowicz [35]

The orthogonality relation for the 3 j symbols are given by:

∑
M,M′

(
J k J
M q M′

)(
J k′ J

M′ q′ M

)
=

1
2k +1

δkk′δqq′ (A5)

We see thus that the Stevens operators have the orthogonality properties shown in equation 3. Now,
the matrix elements of the crystal field Hamiltonian can be expressed as:

〈J,M1|HCF |J,M2〉= ∑
k,q

Bq
k〈J,M1|Oq

k |J,M2〉 (A6)

so it follows that if we right multiply by 〈J,M2|Oq′

k′ |J,M1〉 and sum equation A6 over all M1,M2
we get:
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∑
M1,M2

(
∑
k,q

Bq
k〈J,M1|Oq

k |J,M2〉

)
〈J,M2|Oq′

k′ |J,M1〉= Bq′

k′ ∑
M1,M2

〈J,M1|Oq′

k′ |J,M2〉〈J,M2|Oq′

k′ |J,M1〉

(A7)
from the orthogonality relation A5. Finally, substituting back in equation A1 (and dropping the
primes):

Bq
k = ∑

M1,M2

〈J,M1|HCF |J,M2〉〈J,M2|Oq
k |J,M1〉

/
∑

M1,M2

〈J,M1|Oq
k |J,M2〉〈J,M2|Oq

k |J,M1〉 (A8)

If we express the eigenvalues (energies) and eigenvectors (wavefunctions) of HCF as En and
|Vn〉 respectively, then in terms of the eigenstates of the J,Jz operators, |J,M〉, we get:

|Vn〉= ∑M cn,M|J,M〉 (A9)
En = 〈Vn|HCF |Vn〉 = ∑

M1,M2

cn,M1〈J,M1|HCF |J,M2〉 cn,M2 (A10)

Now, if we form a matrix V with its column being the eigenvectors Vn, and another matrix E
composed of the eigenvalues En along its diagonal, we can re-express the crystal field Hamiltonian
matrix in terms of E and V as Hc f = V EV−1. However, because Hc f is hermitian, V−1 = V T.
Explicitly this eigenvalue decomposition equation is:

HCF = ∑
n
|Vn〉〈Vn|En (A11)

We can thus substitute the expression for HCF in equation A8 to get an expression for the
parameters Bq

k in terms of the energy and wavefunctions. Finally, we note that the operator HCF
must be Hermitian as it corresponds to a physical observable, so that its matrix element obey:

〈J,M1|HCF |J,M2〉= 〈J,M2|HCF |J,M1〉 (A12)

So that the steps leading from equation A6 to equation A8 may be repeated using the right hand
side term in equation A12 instead yielding equation 4 quoted in section II B

Finally we include the implementation of the above algorithm in Matlab, based on the routine
in reference [25].

21



function [FitB2,FitB4,FitB6] = fitengy(A,B2,B4,B6,E,ind_par,constraints)
% fitengy(A,B2,B4,B6) - attempts to fit crystal field parameters in meV.
%
% Syntax: [FitB2,FitB4,FitB6] = fitengy(A,B2,B4,B6,E,ind_par,constraints)
%
% Inputs: A = [L S J] with L,S,J being the angular momentum quantum
% numbers of the ground state multiplet;
% -2 -1 0 1 2
% B2 = [B B B B B ]
% 2 2 2 2 2 are guesses for the crystal field
% B4 = [B_4^{-4} ... B_4^4] parameters in Stevens normalisation.
% B6 = [B_6^{-6} ... B_6^6] in meV.
% E = [E_1 E_2 .. E_2J+1] is a (2J+1)-component vector with the
% known crystal field energies levels in meV
% ind_par = [index_1 ...]
% is a matrix with the index of the parameters to be fitted.
% If ind_par = 0; or not given all non-zero parameters will
% be fitted
% constraints = [15 x 15] matrix of constraints on the CF params.
% The params are indexed as [B20 B21 B22 B40...B44 B60...B66]
% The rows in the constraints matrix indicate the dependent
% parameter and the columns the independent parameter. E.g.
% to specify that B44 = 5*B40, where B44 is the 8th element
% of the parameter vector, and B40 is the 4th, then the
% element constraints(8,4) = 5; To specify B64 = 21*B60,
% the element constraints(13,9) = 21; All other elements is
% zero.
%
% Outputs: FitB2, FitB4, FitB6 are best estimates of the crystal field
% parameters for the given energy levels.
%
% Please note that this function will only attempt to fit the non-zero
% parameters given in B2,B4,B6. If you want a zero initial value for a
% parameter please set it to eps.
%
% This routine is based on the program ENGYFIT.BAS included in the book
% The Crystal Field Handbook by Newman and Ng, CUP 2000.

% By Duc Le (2005) - duc.le@ucl.ac.uk

% The crystal field parameter is given by:
%
% --- q --- q
% > E <l|O |m> > E <l|O |m>
% q ---l,m m k ---l,m m k
% B = ________________________ = ____________________________
% k --- q q q q T
% > <l|O |m> <m|O |l> Tr( <l|O |m> [<m|O |l>] )
% ---l,m k k k k

% To make the equations look nicer
L = A(1); S = A(2); J = A(3);

% The matrix elements of the Stevens operator given by:
% ____________
% k J-M_j -k | (2J+k+1)!
% <LSJM | O |L’SJ’M’> = (-1) ( J k J’ ) * 2 | ---------
% j q j (-Mj q Mj’) \| (2J-k)!
%
% where this is the 3-j symbol---^ and reduced matrix element--^
%
% Reference: D.Smith and J.H.M. Thornley, Proc. Phys. Soc., 1966, vol 89, pp779.

% Works out the reduced matrix elements
if 2*J-2>0
RM2 = (1/4) * sqrt( factorial(2*J+2+1) / factorial(2*J-2) );

else
RM2 = 0;

end
if 2*J-4>0

22



RM4 = (1/16) * sqrt( factorial(2*J+4+1) / factorial(2*J-4) );
else
RM4 = 0;

end
if 2*J-6>0
RM6 = (1/64) * sqrt( factorial(2*J+6+1) / factorial(2*J-6) );

else
RM6 = 0;

end

% Works out the matrix elements <i|O_k^q|j>
ind_i = 0;
for Mj = -J:J
ind_i = ind_i + 1;
ind_j = 0;
for Mjp = -J:J
ind_j = ind_j + 1;

% Rank 2
O_mat_el(ind_i,ind_j,1) = (-1)^(J-Mj) * threej([J 2 J; -Mj 0 Mjp]) * RM2 * 2;
O_mat_el(ind_i,ind_j,2) = (-1)^(J-Mj) * threej([J 2 J; -Mj 1 Mjp]) * RM2 *-sqrt(6);
O_mat_el(ind_i,ind_j,3) = (-1)^(J-Mj) * threej([J 2 J; -Mj 2 Mjp]) * RM2 * 2/sqrt(6);

% Rank 4
O_mat_el(ind_i,ind_j,4) = (-1)^(J-Mj) * threej([J 4 J; -Mj 0 Mjp]) * RM4 * 8;
O_mat_el(ind_i,ind_j,5) = (-1)^(J-Mj) * threej([J 4 J; -Mj 1 Mjp]) * RM4 *-2/sqrt(5);
O_mat_el(ind_i,ind_j,6) = (-1)^(J-Mj) * threej([J 4 J; -Mj 2 Mjp]) * RM4 * 4/sqrt(10);
O_mat_el(ind_i,ind_j,7) = (-1)^(J-Mj) * threej([J 4 J; -Mj 3 Mjp]) * RM4 *-2/sqrt(35);
O_mat_el(ind_i,ind_j,8) = (-1)^(J-Mj) * threej([J 4 J; -Mj 4 Mjp]) * RM4 * 8/sqrt(70);

% Rank 6
O_mat_el(ind_i,ind_j,9) = (-1)^(J-Mj) * threej([J 6 J; -Mj 0 Mjp]) * RM6 * 16;
O_mat_el(ind_i,ind_j,10) = (-1)^(J-Mj) * threej([J 6 J; -Mj 1 Mjp]) * RM6 *-8/sqrt(42);
O_mat_el(ind_i,ind_j,11) = (-1)^(J-Mj) * threej([J 6 J; -Mj 2 Mjp]) * RM6 * 16/sqrt(105);
O_mat_el(ind_i,ind_j,12) = (-1)^(J-Mj) * threej([J 6 J; -Mj 3 Mjp]) * RM6 *-8/sqrt(105);
O_mat_el(ind_i,ind_j,13) = (-1)^(J-Mj) * threej([J 6 J; -Mj 4 Mjp]) * RM6 * 16/3/sqrt(14);
O_mat_el(ind_i,ind_j,14) = (-1)^(J-Mj) * threej([J 6 J; -Mj 5 Mjp]) * RM6 *-8/3/sqrt(77);
O_mat_el(ind_i,ind_j,15) = (-1)^(J-Mj) * threej([J 6 J; -Mj 6 Mjp]) * RM6 * 16/sqrt(231);

end
end

% Arranges energies in ascending order and sets ground state to zero.
E = sort(E) - mean(E);

% Initialises values
FitB2 = B2; FitB4 = B4; FitB6 = B6;
FitB = [B2([3 4 5]) B4([5 6 7 8 9]) B6([7 8 9 10 11 12 13])];
leastsqfit = 0;

% NB: B20 = FitB(1)
% B40 = FitB(4) B43 = FitB(7)
% B60 = FitB(9) B63 = FitB(12) B66 = FitB(15)

% Indexes non-zero parameters to fit
if nargin > 5
ind_par_flag = sum(ind_par);
if ~ind_par_flag
ind_par = [(find(B2)-2) (find(B4)-4+3) (find(B6)-6+8)];

end
else
ind_par = [(find(B2)-2) (find(B4)-4+3) (find(B6)-6+8)];

end

% Starts iterations
for num_iteration = 1:100

Hcf = xtalfld_hmltn_stev(A,FitB2,FitB4,FitB6);
[V, Ecalc] = eig(Hcf);
Ecalc = Ecalc(logical(eye(2*J+1)));

if abs( leastsqfit - sum((Ecalc - E’).^2) ) < 1e-7
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break
end
leastsqfit = sum((Ecalc - E’).^2)
Ei = (Ecalc - min(Ecalc))’

for ind_B = ind_par
numer = 0;

% The numerator = sum_i,j( Ei <j|O_k^q|i> )
for ind_i = 1:(2*J+1)
for ind_j = 1:(2*J+1)
for ind_k = 1:(2*J+1)
numer = numer + V(ind_j, ind_i) * O_mat_el(ind_j,ind_k,ind_B) * V(ind_k,ind_i) * E(ind_i);

end
end

end

% The denominator = Tr(<i|O_k^q|j><j|O_k^q|i>)
denom = trace( O_mat_el(:,:,ind_B)’ * O_mat_el(:,:,ind_B) );

FitB(ind_B) = numer / denom;
end

% Updates constraints
if nargin > 6
cstr = constraints * FitB’;
cstr_ind = find(cstr);
FitB(cstr_ind) = cstr(cstr_ind);

end

FitB2 = [0 0 FitB([1 2 3])];
FitB4 = [0 0 0 0 FitB([4 5 6 7 8])];
FitB6 = [0 0 0 0 0 0 FitB([9 10 11 12 13 14 15])];

end
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