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Gold coated, silica core nanoshells of dimensions 100nm were synthesised using molec-
ular self-assembly, and chemical reduction synthesis techniques. These were analysised
using a UV-visible spectrophotometer, and the result compared with Mie theory.

I. INTRODUCTION

Metal nanoshells are a type of nanoparticle composed of a silica core, and a metallic coating.
Their usual geometry is shown in Figure 1. These particles have excited interest due to their
remarkable optical properties. In common with metal colloids, they show distinctive absorption
peaks at specific wavelengths due to surface plasmon resonance. However, unlike bare metal
colloids, the wavelengths at which resonance occurs can be ‘tuned’ by changing the core radius
and coating thickness. One application of this is in medicine, where it is hoped that nanoshells with
absorption peaks in the near-infrared can be attached to cancerous tumours. Thereafter they can
be excited by lasers to heat up and kill the tumours [1]. Recent work by Halas et al. has resulted
in a simple chemical synthesis technique of these particles which allows the core radius and shell
thicknesses to be selected by changing the concentrations of the chemicals involved [2, 3]. Using
this technique, | produced nanoshells of various dimensions, which were analysed using a UV-
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visible spectrophotometer. These results were then compared with the predictions of Mie theory,
the classical theory of light scattering from small spherical particles. An atomic force micrograph
was also taken of the nanoshells to determine their sizes.

[I. THEORETICAL BACKGROUND

An exact solution of Maxwell’s equations for spherical boundary conditions was first devel-
oped nearly a century ago, and is usually attributed to Gustav Mie, although others such as Peter
Debye and Hendrik Lorentz also constructed similar solutions at the same time [4]. An outline
mathematical derivation is given in Appendix V1. For our purpose in using Mie theory to compare
our spectrophotometric results, we require the extinction cross-section:

Cot = i_’; ni(zn 4+1)0{an+bn} 1)

where k is the wave number of the scattered wave, a, and by, are the scattering coefficients.
The extinction cross-section is a measure of the combined effects of absorption and scattering of
light by the particle . It can be loosely interpreted as the “shadow” cast by the nanoshells on our
detector. It is related to the absorbance by [6]:

A= |Oglo (ﬁ) (2)

where N is the nanoshells number density in solution. Hence we can see that the absorbance is
a maximum when the extinction cross-section is maximum.

As shown in Appendix VI, in Mie theory the electric and magnetic fields are expressed as
infinite sums over the vector spherical harmonics, and the harmonics for the scattered fields are
weighted by the coefficients a, and b, (equation 17). We can interpret these vector spherical
harmonics as representing normal modes of the nanoshell, with the two modes for each n corre-
sponding to transverse magnetic and transverse electric modes, in which there is no radial electric
and magnetic fields respectively. For the case of a nanoshell of core radius a and total radius b, the
coefficients are given by:

g, — W) [Wn(M2y) — AnXn(MY)] — MaWn(y)[Wn(M2Y) — Anxn(may) 3)
En( )Wa(mz2y) — Anxn(ma2y)] —m28&q(y) [Wn(m2y) — AnXn(Mzy)]
by, — M2¥n(¥)[Wn(May) — Bnxn(may)] — %( )[Wn(m2y) — BnXn(May)] )
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M2n (M2X) Ph(MaX) — Man(MaX) YPn(Max)
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where x =ka = 2N andy = ka = 2T§'\\‘b is the size parameter of the core and shell respectively,

and m1 and my is the relative refractive index of the core and shell to that of the medium. Wn(z), Xn
and &, are the Ricatti-Bessel functions, and the primes indicate differentiation with respect to the
argument. A single mode a,, or b, will therefore dominate over all the others if the denominator in
that coefficient is zero. Now if we take the limit of small particles, and expand the Ricatti-Bessel



functions in power series, we see that the denominator of by, will never vanish for any n, but that
of a will vanishas x — 0,y — 0O if:

n+1
m%:—T (h=1,2,..) (5)

For the a; electric dipole mode, then we require m% = —2. Since the refractive index is generally
complex, we have m = iy/2. In terms of the complex dielectric function (€ = N?2), this condition
Is €, = —2€&m Where g, is the dielectric function of the medium. Since the dielectric function
is a function of frequency, the frequency at which this condition is met is called the Frohlich
frequency wg, and the a; often called the Frohlich mode after Herbert Frohlich who first obtained
an expression for this frequency for dielectric crystals [7]. The effect of finite size and the gold
coating over the silica core is to change the condition 5, and hence shift the Frohlich frequency. It
can be shown that for the nanoshell we require:

- Ez(l—f)+(2+f)
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where f = a3/b3 is the volume fraction of the core to the total volume. Thus the shift in
frequency depends on the dielectric constant of both core and shell and the ratio of their sizes.

In must be noted here that whilst we have used the language of classical electrodynamics to
describe the optical properties of nanoshells, that both the classical and quantum mechanical de-
scriptions are quantitatively the same. Indeed, the electrodynamical treatment includes the neces-
sary quantum mechanics within it in the form of the dielectric function, which for many materials
cannot be adequately described by classical models.

However, the use of quantum mechanical terms in the literature is extensive. In particular, what
we have refered to as normal modes are termed surface plasmons and interpreted to mean the
quantised excitations of charge density imparted by the material absorbing an incident photon. In
bulk materials, a plasmon would have energy iwp Where wp = Ne?/meg is the plasma frequency
of the material. However, in small particles, the energy of the plasmon becomes Awg, which can
be shown for simple free electron metals to be some fraction of the bulk plasmon energy, hence
the term surface plasmon.

1. EXPERIMENTAL METHODS

Spherical silica nanoparticles were synthesised first using Stober’s method [8], in which am-
monia is used as a catalyst for the hydrolysis of tetraethylorthosilicate (Si(OC2Hs)4), or TEOS,
in a solution of absolute ethanol. The reaction of water with TEOS produces a singly hydrolysed
TEOS monomer, (OH)Si(OC2Hs)s, which subsequently condenses to form silica. The overall
reaction is:

Si(OCgHs)4 + 2H20 — SiO2 + C3Hs0H

It is thought that the condensation causes the continuous nucleation of insoluble silica particles
which later aggregate to form the final spherical nanoparticles [9]. Thus the final size of these
particles depends to both the nucleation and aggregation rates. Large particles will be produced
at low nucleation and high aggregation rates, which corresponds to a low water concentration,
denoted [H20], but high TEOS concentration [TEOS], and vice versa. Thus a major factor in the
size of the silica spheres is the ratio R = [H20]/[TEOS] [10]. In addition, the alcohol solution
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FIG. 2: Steps involved in the synthesis of silica-gold nanoshells

in which the hydrolysis takes place also affects the size, with ethanol producing particles about
twice as large as methanol due to a lower supersaturation ratio of the single hydrolysed monomer
which causes a lower nucleation rate [11]. For our purpose, to synthesise spherical silica cores of
~ 100nm radius, 3m of 30% ammonia solution in water, and 1.5ml of TEOS was added to 50ml
of ethanol, and stired vigourously. The chemicals were obtained from Sigma Aldrich, and used as
received.

The silica core thus produced was then coated with 3-aminopropyltrimethoxysilane, APTMS.
About 30ul of APTMS was added to the 50ml of silica particle solution just made. The APTMS
is adsorbed onto the silica surface, forming a siloxane bond between a silicon atom at one end of
the APTMS molecule and an oxygen atom on the silica particle. As a result the other end of the
APTMS molecule with an amine (HNH>) group always points away from the silica core, as shown
in Figure 2. These amine group acts as attachment point for colloidal gold particles, due to their
affinity for gold [12]. A separate solution of gold colloids, about 2nm in radius, was prepared by
the reduction of chloroauric acid, HCIAu4 with tetrakis(hydroxymethyl)phosphonium chloride, or
THPC, in a sodium hydroxide NaOH (aq) solution. 2ml of 1%HAuCl4 was added to a solution of
45ml high grade water, 0.5mI2IMNaOH and 1ml THCP. 5ml of this colloidal solution was added to
0.5ml of APTMS-functionalised silica core solution, resulting in silica nanoparticles with perhaps
25% of their surface covered by colloidal gold.



These nanoparticles formed a suspension, which was allowed to settle. Thereafter, the excess
ethanol was pipetted out, and the particles redispersed in high grade water. Subsequently a re-
ducible gold solution, made by adding 1.5ml of 1%HAuCl, to 25mg of potassium carbonate in
100ml of high grade water, was added to the gold-attached silica solution. 10ul of formaldehyde
was then added to suddenly increase the pH, bring the gold out of solution, to self assemble on to
gold already on the silica core, completing the gold coating [3]. Different thickness of gold shells
were obtained by varying the concentration of the HAuCl4 solution added.

The nanoshell solutions were analysed as made using a Perkin-Elmer Model 330 spectropho-
tometer. For the atomic force microscope analysis, the nanoshell solution was pipetted onto a tilted
silicon substrate and left to evaporate to form a thin film.

IV. RESULTS

The spectra for representative nanoshell solutions made is shown in Figure 3, along with a
theoretical fit. The fit was calculated using equations 1, 2, 3 and 4. For the required complex
refractive index of gold, the experimental data of Johnson and Christy was used [13], and for silica
that of Malitson [14]. These data were further modified to take into account the dimensions of the
nanoshell, which is of the same order or smaller than the electron mean free path in gold(x~ 11nm),
where collisions with the shell boundaries may become more important. Using the simple Drude
theory [4], the dielectric constant is modified by:

w2 w2
: P . i P (7)
WP+ ik W2+ i0(Ybuk+Ve/(b—a))

where gep Is the experimentally obtained dielectric constant, yuk is the bulk collisional fre-
quency, Vg is the Fermi velocity.

In addition, the theoretical fit presumes a gaussian size distribution for the nanoshells, which
is calculated by weighting the extinction cross-sections at different sizes accordingly, and then
summing these contributions.

Finally, Figure 4 shows an atomic force micrograph of a nanoshell sample, with a histogram
size distribution in Figure 5

Whilst Figure 5 suggests that the nanoshells are quite small, the Mie theory fits in Figure 3
shows that the particles should be at least twice as large as was infered from the AFM data. The
histogram in Figure 5 was calculated by the SCION Image program, which requires a strong
contrast between particles. Because of the clustering of the nanoshells in a ‘ridge’ near the left
hand side of Figure 4, the contrast may not have been high enough. In addition the program
requires a ‘threshold’ height in order to determine the boundary of the particles. Since the particles
on the ridge is much higher than that elsewhere, it is probable that the program discounted many
particles that did not pass the threshold. In light of these factors, it is difficult to estimate the
errors in Figure 5, but it’s probably fair to say that it may not be representative of the overall size
distribution of the nanoshells.

V. FURTHER WORK

The nanoshells that | have produced have had relatively large size distribution, and thick shells.
As seen in Figure 3, this results in a broad absorbance peak, which is not shifted very far from
the Frohlich frequency of pure gold(~ 520nm). For the medical purposes given in Section I, we
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FIG. 3: Nanoshell absorption spectrum and calculated Mie theory fits.

would need a much larger shift, corresponding to a thinner shell, and larger core radius. Therefore
the next step is to try to synthesise such nanoshells. In addition to gold, silica-core, silver shelled
particles have been made elsewhere [15], as are gold-core, silver-shelled particles [16], so an
investigation of similar combinations may be of interest.
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FIG. 4: Atomic force micrograph of a silica-core, gold-shell nanoshell. The shells tend to form clusters like
that on the left side of the graph.
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FIG. 5: Histogram of particle size from atomic force micrograph. The size distribution was determined
using the SCION Image software. The low values for the radius is due to the lack of resolution in the
micrograph, and probably the contrast between the clustered nanoshells and unclustered caused many to
be miscounted.

Appendix
VI. MIE THEORY DERIVATION

In the treatment that follows, we will be using the approach of Stratton [5]. We first take the
incident fields as time-harmonic, with an exp(—iwt) dependence, so that the Maxwell’s third and
four equations means that the electric and magnetic fields are not independent, and both satisfy
the vector wave equation:

Ox E = iwpH
OxH = —iweE
PE+k?E=0

[0°H +k?H =0 (8)



Now, we can express the electric and magnetic fields as infinite sums over the vector spherical
harmonics, denoted by M and N, and constructed from a scalar generating function s as follows:

M =0x (cyp)

N:DiM )

where c is an arbitary constant vector called the pilot vector, an k? = w?ejl is the wave-number
of the electromagnetic wave. These vector harmonics have properties similar to the electric and
magnetic fields: They are divergence free, and the curl of one is proportional to the other (in the
case of time-harmonic fields). In addition, they satisfy the vector wave equation if the generating
funtion also satisfies the scalar wave equation:

2P+ k2P =0 (10)
The solutions of this equation in spherical polars is well known, and is:

Wern = cos(m@)P.(cos )z (kr)
Womn = sin(me)P"(cos B)zn(kr) (11)
The subscripts e and o denote even and odd, P]" is the associated Legendre function of the first

kind of degree n and order m, and z, is any of the four spherical Bessel functions jn, yn, hﬁl),

hﬁz) (first, second and third kind respectively). These functions form a complete set, so the vector
harmonics M and N generated from Wem and Yomn Will also form a complete set, and will be
solution to the vector wave equation. Hence any solutions to the vector wave equations (i.e. the
electric and magnetic fields) can be expressed as an infinite series in the vector harmonics:

00 [ee]

E= z BernM emn + BormnM ormn + AermnNermn + AomnNormn (12)

m=0n=
Another property of the vector harmonics is that they are orthogonal:

<M em’n’|Momn> = <Nem'n’|Nomn> = <M om’n"Nomn> = <M errfn"Nernn> =0 (all m, n, m’, n/)

(Memn|Memy) = (Mom|Momy) =0 (for n # n’ and m # 0)
(Nemn|Nemr) = (Nom|Nomw) =0 (for n # n’ and m # 0) (13)

where the brackets indicate an inner product f02” Jo'sinBdBd@. We can thus determine the
coefficients A and B in equations 12 by using the inner products to pick out individual terms with
different values of m, and n in turn.

Using equations 9 and 11 we can obtain expressions for the spherical harmonics in component
form (in spherical polars). If we further assume that the light incident on the nanoshell is plane
polarised, then equating the components and picking out terms in the inner products we can get
the desired expansion:

n 2n+1
Eo z n+1 (()1)n IN((El?’l)
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The superscript (U indicates that a Bessel function of the first kind (jn) was used in the gen-
erating function to ensure that the fields remain finite at the origin, in the centre of the nanoshell,
since yp — —o asr — 0.

Now that we have an expression for the incident (plane wave) fields in terms of the vector har-
monics, we can use the boundary conditions for EM waves in a media (E| and H| - the component
of the field parallel to the boundaries - must be continuous across the boundary) to express the field
inside the shell (E», H2) and core of the particle (E1, H1), and the field scattered by the particle

(ESI HS):

2n+1
E1 Eo 2, m( E)l)n idnN ((el)n)
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n=

where cp, dn, gn, fn, Vi, W are coefficients to be determined. In the shell both bessel functions
of the first and second order are finite, so we have to include both (denoted by the superscripts) in
the series expansions.

Finally we have the scattered fields:

2n+1 (3) (3)
Es=E bnM 7 +iapN
S 0nZl (n+1)( n oln n eln)
n 2n+1 .
Eo 2 Sy eM e+ ibNery) (17)

where a,, and by, are the scattering coefficients to be determined. The superscript (3 indicates

that the vector harmonics are derived from the Hankel function of the first kind, hﬁl) (kr) = jn(kr)+
iyn(kr) whose asymptotic behaviour corresponds to an outgoing wave, unlike the Hankel function
of the second kind, which corresponds to an incoming wave.

To determine the coefficients above, we need to substitute these series expansions into expres-
sions for the boundary conditions in component form. This yields a system of eight equations in
the eight coefficients which can then be solved to yield, the scattering coefficients:

Wn(Y) [Wn(m2y) — AnXn(mzy)] — maWn(y) [Wn(Mzy) — AnXn(mzy)]
En(Y)[Wh(m2y) — AnXp(may)] — m2&h(Y) [Wn(M2y) — AnXn(M2y)]

[
[
M2Wn(Y) [Wn(May) — BnXn(may)] — %( )[Wn(mzy) — Bnxn(may)]
M2&n(Y) [Wh(m2y) — Bnxn(m2y)] — &L(Y)[Wn(m2y) — BaXn(may)]
_ MaWn(M2X) Wh (M2x) — M2y (MaX) Yn(M1X)
" MaXn(M2X)Wh(Max) — maxh(mM2X) Pn(mx)

dn =

n—




_ M2Wn(Max)Wn(M2X) — MaWn (M2X)Wn(Max)
M2Xn(M2X) P (M1x) — MaX{(MaX) Pn(ma2x)

where x = ka = ZTK\‘—E‘ andy =ka= %b is the size parameter of the core (radius a) and shell

(total radius b) respectively, and mq and m;, is the relative refractive index of the core and shell to
that of the medium.

(18)

A. Cross Section

Now that we have explicit expressions for the scattered fields, we can work out the scattered
intensities and cross-sections. The power scattered is given by integrating the Poynting vector
(S= E x H) over the surface of an imaginery sphere that much larger than the particle:

A

where Ss = Eg x Hg is the scattered Poynting vector, r is the radial unit vector in spherical
polars. In components:

1 21 ,TU . N2
We = ED/O /0 (EsgHp — EpHZ)r2sin 6d6de
where r is the radius of the imaginery sphere. We now substitute in the expressions for the
scattered fields in component forms (as series expansions in terms of the normal modes) and

intergrate term by term:

2 oo
S (2n-+1)(jan[? + [bnl?)
n=1

B mE,
s= koou

and the cross sections is:

Ws _ 2m
i k2

since |; = |Eo|?, and k? = w’epl.

In addition to the light that is scattered by the particle, some of the incident light is also ab-

sorbed. The sum of the absorption and scattering is the extinction, with the extinction power given
by: Wex = Wa+Ws. The absorbed power is:

Cs= Y (2n+1)(|an|*+ [bn|?)
n=1

Wa:/(Elel)-rdA
A

substituting in the expressions for E; and H1 in terms of the scattered and incident fields from
the four boundary conditions equations above, we get the expression for the extinction power in
component form:

1 2n pm . . . ) -
Wee = iD/O /o (EigHg — EioHgy — EspHity + EspHig) r*sin8d6d ¢

and from this, substituting in the expressions for the field components, and integrating term by
term, finally dividing by the incident amplitude, we get the extinction cross-section:
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To a good approximation, our detector has a small enough area, and is far enough from the
scattering particle, that the solid angle it subtends at the particle is negligible. Thus the scattered
intensity, being proportional to the solid angle subtended at the particle is also negligible. This
means that the power at the detector is

W ~W; —Wey = li(Adetector — Cext)

Hence to determine Ce¢ We simply measure the incident intensity I; without the particle, and
then measure the intensity with it.



