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Abstract

We investigate the intensity correlation function of laser light scattered
off a suspension of latex spheres in de-ionised water. After verifying the
performance of our detectors, we use the technique of intensity fluctuation
spectroscopy to find Boltzmann’s constant by measuring the intensity corre-
lation function. A value of kB = 1.26±0.14×10−23JK−1 was obtained.

1 Introduction

It is well known that particles in a fluid undergo small random movements, called
Brownian motion, at finite temperatures. In the simplest case of non-interacting
particles this is due to collisions between the atoms of the fluid and the particles.
These collisions give rise to a fluctuating force on the particles which vary their
position and velocity. The particles’ motion is also damped by the same collisions,
and these two effects are related by the fluctuation dissipation theorem:

µkBT =

Z ∞

0
< v(t)v(0) > dt (1)

where µ = 1/(6πηR) is the mobility of the particles, η is the shear viscosity of
the fluid, R is the radius of the particle, for spherical particles; kB is Boltzmann’s
constant, T is the temperature, and < v(t)v(0) > is the velocity autocorrelation
function. The quantity µkBT is the diffusion constant D0.

Thus if we can measure the velocity autocorrelation function, we can find
the particle size, knowing all other variables. Since the velocity autocorrelation
function is related to the positional fluctuation of the particles, we can infer it by
measuring the positions of the particles over time. We do this indirectly by mea-
suring the diffraction pattern that the particles, each acting as a single scatterer,
produce when coherent (laser) light is shone on them.

This is discussed further in Section 2. This method, called Intensity Fluctua-
tion Spectroscopy (I.F.S.) is now widely used to find the size of proteins, viruses,
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polymers, colloids or sediments. In this investigation, however, we will use la-
tex spheres of known size, measured using an environmental scanning electron
microscope, to determine Boltzmann’s constant.

The standard setup is to use a photomultiplier to detect the intensity of the
scattered light, connected to a autocorrelator to produce the intensity correlation
function. For this investigation, however, we use a photo-diode with built in volt-
age amplifier connected to a PC to perform the autocorrelation. The light source
is a He-Ne gas laser, with a wavelength of 633nm.

2 Theoretical Background

If a suspension of randomly moving particles is illuminated by a coherent light
source, a randomly fluctuating diffraction pattern, called a speckle pattern, is
produced. We can easily measure the (temporal) intensity (second order) auto-
correlation function of this speckle pattern, and from that determine the velocity
autocorrelation function above. The intensity autocorrelation function is given by:

g(2)(τ) =
< I(t + τ)I(t) >

< |I(t)|2 >

g(2)(τ) = 1+ |g(1)(τ)|2 (2)

where the angular brackets indicate averaging over the fluctuations, and g(1)(τ)
is the amplitude, or first order, correlation function given by:

g(1)(K,τ) =
< E(K, t + τ)E∗(K, t) >

< |E(K, t)|2 >
(3)

Here, K ≡ K = 4π/λsin(1
2θ) is the scattering wave-vector, θ is the scattered

angle, E is the electric field of the scattered light, which is a sum over that scattered
off each particle:

E(K, t) ∝
N

∑
i=1

exp(iK · ri(t)) (4)

with ri(t) is the position of the ith particle at time t. Substituting this into
Equations 3, we get:

g(1)(K,τ) =
∑N

i=1 ∑N
j=1 < exp(iK · [ri(t)− r j(t + τ)]) >

∑N
i=1 ∑N

j=1 < exp(iK · [ri(t)− r j(t)]) >
(5)

Now, assuming that the particles do not interact, so the velocities and positions
of different particles are not correlated, then the cross terms with i 6= j vanish, so
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Figure 1: Experimental setup. The laser and detector were aligned on an optical
bench, with a Polaroid to control the intensity reaching the detector; a lens to
focus the light onto the specimen - the suspension - and an aperture to ensure that
we have a ’point’ detector, so that the autocorrelation will be valid.

the denominator in Equation 5 simplifies to N which cancels with a similar term
in the numerator. We can simplify Equation 5 further, without loss of generality
by taking only the x-component of position and velocity, and K to be in the x-
direction. The equation then becomes:

g(1)(K,τ) =< exp(−iK[x(t + τ)− x(t)]) > (6)

where x(t +τ)−x(t) =
R τ

0 v(t)dt. Since the collisions between the fluid molecules
and the particles causes the velocity to fluctuate rapidly, it can be taken as a uni-
formly distributed random variable with small characteristic fluctuation time, so
that for τ much larger than this time, Equation 6 becomes:

g(1)(τ) = exp(−D0K2τ)

Substituting this into Equation 2:

g(2)(τ) = 1+ exp(−2D0K2τ) (7)

where D0 is the diffusion constant, which is given by Equation 1[Pusey].

3 Preliminaries

3.1 Equipment

Before setting out to measure the intensity autocorrelation function of Brownian
motion scattered laser light, we conducted experiments to ascertained the limits
of our equipment. This involved investigating first the characteristics of the light
detector, and then that of the analogue-to-digital converter through which we sent
our data to a PC to perform the autocorrelation.
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All the experiments used a setup similar to that depicted in Figure 1. Inves-
tigating the light detector, as described in Appendix A, we found that the light
detector saturates at 5V, but that it stopped behaving in a linear fashion after 3V.
Therefore to get accurate data, we must keep the intensity low enough that these
voltages are not reached, to be reasonably sure that the intensity is proportional to
our voltage signal. Since the autocorrelation function is a difference measure, the
absolute value of intensity is not important, merely that the voltage-intensity rela-
tion is linear, so that we can be sure the voltage autocorrelation that we calculate
closely matches the intensity autocorrelation.

The analogue-to-digital converter (ADC) we used has a frequency bandwidth,
or maximum sampling rate, of 15kHz, so we should expect aliasing for signals
with frequency of above 7.5kHz by Nyquist’s criterion. Software supplied with
the ADC allows us to control the sampling rate from the PC. In addition to this,
the ADC also has two modes: a real-time mode where the computer accepts data
from the ADC as it receives them; and a fast-block mode where the ADC stores
the collected data internally and then returns all the data after then end of run.

For both methods, we found that the sampling interval was not constant but
varied around the specified interval. In addition the ’real-time’ mode returned the
wrong times for each samples. That is, if the sampling interval was 1ms, the ADC
would return 10 voltage values and assign them all a time of 10ms, instead of 1ms,
2ms, 3ms, etc. This may be due to the Windows XP operating system which does
not allow a software application direct access to the parallel port where the ADC is
connected, for security reasons. This means that the software logging application
can only access the parallel port to read the data when the operating system (OS)
allows it - every 10ms apparently. So the software receives batches of samples
from the ADC every time the OS allows it, and assigns them all the same time,
which it obtains from the PC’s clock.

On the other hand, the fast-block method does not have this problem. How-
ever, due to the limited memory on the ADC itself, the fast-block method is limited
in the amount of data it can take - and hence the length of time over which it can
sample, or the resolution (sampling rate) at which it can sample.

The autocorrelation of the sampled data is done via a simple program in Math-
cad. This program also calculates the power spectral density via a fast Fourier
transform. This calculated autocorrelation does not introduce more errors, but is
only as accurate as the sampled data. Therefore the major source of errors comes
from the non-linearity of the light detector at high intensity, and from the ADC.
To minimise these, we should ensure that the intensity of light on the detector is
below the linear limit, and that the sampling rate of the ADC is much higher than
the coherence time of the moving speckle pattern.
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3.2 Speckle Patterns

Equation 2 in Section 2, where the intensity correlation function was related to the
amplitude correlation function, only holds for Gaussian light. This means that the
probability of finding the resultant amplitude of the light in the range A to A+dA
is proportional to AdAexp(−A2/A2

0), where A0 is a constant. Thus we should
expect the intensity probability to be proportional to exp(−I/I0).

We expect the laser light scattered off particles moving with Brownian motion
to be Gaussian, because each scattering particle is independent of each other, so
that their total contribution to the amplitude at any point would follow a random
walk in an amplitude-phase diagram. Thus for a large number of scatterers, by
the central limit theorem, we should expect the amplitude to follow a Gaussian
distribution.

We tested this using a ground-glass slide mounted on a motor, rotating at 2
r.p.m., placed between the Polaroid and the detector, and measured the intensity
of the light. Because we want to measure the intensity at a single point, as the
speckle pattern produced by the moving ground glass varied over time, rather
than that over an area, we need a ’point detector’. In practical terms, it is adequate
for the detector to be small enough to detect only a single speckle at a time. Thus
we want to restrict the detector aperture to the size of a single speckle. However,
a smaller aperture lets in less light, so we would need to amplify the signal more,
and so introduce more errors. Therefore, we need to find a compromise betweent
the need for a ’point’ detector and signal strength.

Since the speckles are simply 2D Fraunhofer fringes, their size is given by:

d =
λ
α

(8)

where α is the angular size of the laser light at the ground glass specimen,
as seen from the detector. We use a lens between the Polaroid and ground-glass
slide, with the slide at the focus of the lens, to fix the size of the source, and then
varied the distance, l, between the slide and detector to vary α, since α = tan(s/l)
where s is the size of the light source at the slide. Using this method we found a
configuration that gave a speckles size at the detector of about 1mm, and hence
can use the 1mm diameter aperture on the detector.

Using this setup we measured the intensity as a function of time, as the ground
glass rotated. A histogram of this measurement would show the intensity proba-
blity which we expect to be an exponential decay. This is seen in Figure 2.

An autocorrelation function was also calculated from the data, and is shown
in Figure 3, with a Gaussian fit to the data shown in green. Theory predicts that
a chaotic, Gaussian light source can have either a Gaussian or a Lorentzian in-
tensity correlation function. It will be Lorentzian if no Doppler broadening oc-
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Figure 2: Histogram of I(t), which shows the probability p(I) of finding an in-
tensity I between I and I + dI. This shows that scattered laser light is indeed
Gaussian, as it behaves as p(I) ∝ exp(−I/I0). The exponential decay does not
quite start at zero intensity because of background ambient light.
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Figure 3: Autocorrelation function for a rotating ground glass slide, moving at 2
r.p.m. The solid green line indicates a Guassian fit to the data.

curs. In our case, however, the ground glass is relatively coarse, not very uniform,
and moves through a large distance, so the scattering centres move with different
speeds, creating a broadened source. Theory predicts in this case that the intensity
autocorrelation function is [Loudon]:

g(2) = 1+ exp

[

−π
(

τ
τc

)2
]

(9)

where τc is the coherence time. From the fit to the data, the coherence time
is 3± 0.1ms. We expected that τc would be related to the speed of the ground
glass slide and the beam diameter at the slide, however, we found that with a
speed of 4.2mms−1 (as the laser illuminated a point about 20mm from the centre
of rotation, and the slide moved at 2r.p.m, and a laser dot of diameter ≈ 0.1mm,
we get a time of ≈ 25ms, an order of magnitude larger than what we found.

The diameter of the laser dot is only an estimate since we used a lens to focus
the laser beam onto the ground glass, making length measurements difficult. In
addition, the speed of the speckles moving across the detector maybe different to
the speed of the ground glass slide, and this speed should have a greater bearing
on the coherence time.

In addition, the autocorrelation function did not start at g(2) = 2 as expected by
theory, because of ambient light. That is, this background light effectively added
noise to the system, and hence reduced the coherence of the detected signal, so
that the initial autocorrelation is less than expected.
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Figure 4: Environmental Scanning Electron Micrograph of the latex spheres that
we used in suspension.

3.3 Latex Spheres

To measure the size of the latex spheres in the suspension, we used an environmen-
tal scanning electron microscope. In this instrument, the sample is placed within
a humidity controlled environment. As the humidity is increased by adjusting the
pressure and temperature of the sample, water droplets condenses on and forms a
film on top of the sample. Electrons are then directed onto the sample, and hence
ionises the water film. Other electrons incident on the ionised film get scattered
and are detected forming a picture of the sample, such as that in Figure 4. From
this micrograph we found that the radius of the latex spheres is 0.52±0.04µm. We
can now substitute this into the equation for the diffusion constant (Equation 1),
with a viscosity appropriate for water at 293K, to find Boltzmann’s constant.
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Figure 5: A plot of the exponent of the autocorrelation function against the square
of the wave vector. The gradient gives us the diffusion constant, and in turn Boltz-
mann’s constant.

4 Brownian Motion

Finally, we turn to the investigation of the Brownian motion of latex spheres in
suspension. We will use the setup shown in Figure 1 to measure the intensity
correlation function of laser light scattered off the suspension, and to find Boltz-
mann’s constant from this measurement, as described in Section 2.

Equation 7 shows that the autocorrelation depends on K the scattering wave
vector, which in turns depends on θ the scattering angle. Therefore, to get as
accurate an estimate for Boltzmann’s constant as possible, we will measure g(2)(τ)
for a range of θ. By fitting a straight line curve to the equation:

ln(g(2)(τ)−1) = −2DK2τ

we can find the gradient, 2DK2, which is the exponent in the autocorrelation
function. The exponents for different scattering angle is then plotted in Figure 5,
along with lines of best fit. This gives an estimate for Boltzmann’s constant of
1.26± 0.14× 10−23JK−1. This value for kB agrees with our expectations, but it
should be noted that the error of about 10% is quite large for this technique. When
used to estimate the size of the particles in suspension, I.F.S. can give results to
within 1 or 2% [Pusey]. The reason for our large error here may be due to our
light detector, which has no photomultiplier, and uses electronics amplification,
which may introduce error into the measurements.
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5 Conclusion

Despite the rather large error in our estimate of Boltzmann’s constant, it is still
within 2σ of the accepted value. This shows that I.F.S. can be used to accurately
estimate various parameters of a suspension of particles, using a more sophis-
ticated setup. In addition, our experiments confirm the theoretical predictions
about the statistical nature of chaotic light - that is, it behaves according to Gaus-
sian statistics. We also show that a cheap analogue-to-digital converter / PC com-
bination can give results comparable to that of much more expensive, dedicated
analogue electronics, such as a purpose-built autocorrelator, for simple applica-
tions.

Nonetheless, we have not really touched some of the deeper physics of I.F.S.,
as we have only considered the simplest case, where we have only non-interacting
particles. Interactions would be of great interests to fields such as biophysics
which uses I.F.S. to study proteins, and other complex molecules. These interac-
tions could be studied using the latex spheres that we have, as we observe in the
scanning electron microscope that they tend to stick to each other when they get
close. This occurs due to ionised water film formed on the spheres attracting each
other.

Therefore, future experiments could consider these interactions, by using a
suspension with a higher density of latex spheres so that the Coulomb potential
between the spheres has a greater effect. We can also improved the light detector,
with a photon counter, and photomultiplier instead of just a signal amplifier, and
use greater ambient light shielding to reduce noise.

References

[Pusey] P.N. Pusey The Study of Brownian Motion by Intensity Fluctuation Spec-
troscopy Phil. Trans. R. Soc. Lond. A 293, 429-439 (1979).

[Loudon] R. Loudon The Quantum Theory of Light, 3rd Edition, p.111, Oxford
University Press (2000).

10



Appendix

A Characteristics of the Light Detector

To investigate this an optical bench similar to Figure 1 was setup with only a
Polaroid film between the laser and detector. The Polaroid could be rotated to po-
larise the laser light in different directions and hence vary the intensity falling on
the detector. Since the laser light would already be plane polarised at the centre
of the beam, we found the cos2 θ dependency of the intensity of the beam with
the angle of the Polaroid off the (up-down) polarisation of the laser, predicted by
Malus’ Law. However, this occurred only for low voltages as shown in Figure 6.
The measured voltage falls away from the expected curve around 3V. A digital
multimeter connected in series to the detector was used to measure the voltage
output of the detector. The high errors at high intensity is due to fluctuating volt-
ages that the detector produced, probably due to it being at the limit of its detection
range.

Figure 6: A plot of the voltage output of the light detector with the angle of the
Polaroid. The solid line indicates a Malus’ Law (cos2 θ fit to the data. This fit fails
at high voltage as the detector stops being linear, and eventually saturates.
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