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Abstract

Quantum effects are becoming more important in electronics as devices
get smaller. This paper will discuss the tunnelling effects in semiconductors,
and what factors affect them. We present experimental data that supports
the predictions of quantum mechanics. Finally, we will discuss resonant
tunnelling diodes that uses a quantum well to create a negative differential
resistance, which can be used in oscillators and amplifiers.
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1 Introduction

As semiconductor devices become ever smaller, they become more subjected to
quantum mechanical effects, such as tunnelling. The nearly free electron model
tells us that in semiconductors there is a small bandgap which electrons can cross
due to thermal excitations. These electrons can then conduct because the con-
duction band into which they had crossed has many unfilled states. However, in
different semiconductors, the bandgap, and hence the conduction band, is at differ-
ent energies. If we place a semiconductor with a small band gap next to one with a
large bandgap, then electrons moving from the first to the second would encounter
a potential barrier. It is possible to produce such a barrier using III-V semiconduc-
tors such as GaAs, AlAs or AlGaAs. This is because these semiconductors have
very similar lattice constants, so that no dislocations will be introduced when there
is an abrupt change from one semiconductor to another. Furthermore, GaAs and
AlAs have just such a bandgap difference as we want, with an energy difference
in their conduction bands of ∆Ec = 1.1eV .

Thus we can produce simple one dimensional barriers and wells by layering
these semiconductors. This is done by Molecular Beam Epotaxy (MBE), with
each layer deposited one atomic layer at a time. These layers can produce simple
barriers, as shown in Figure 1 (a). We can also produce quantum wells by com-
bining two barriers, as in Figure 1 (b). In this paper, we shall investigate quantum
mechanical tunnelling across these barriers, and their potential application in mi-
croelectronics.

2 Quantum Tunnelling

2.1 Theory

Tunnelling occurs when electrons encounter a potential barrier with height greater
than their energy. Classically the electrons may not pass through the barrier onto
the other side. However, the wave-particle nature of electrons predicted by quan-
tum mechanics requires that the wavefunction representing the electrons be con-
tinuous at the barrier interface. This means that the wavefunction dies away expo-
nentially within the barrier region, rather abruptly go to zero at the interface. As
the square of the wavefunction represents the probability of finding the electrons
at a certain position, there is the probability that the electron can be found within
the barrier. If the barrier is narrow enough, then the wavefunction will not have
decayed to zero at the opposite interface, and hence the electron may be found
on the other side of the barrier. The electron will thus have tunnelled through
the barrier. Solving the Schrödinger equation for the quantum barrier, with the
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Figure 1: Quantum barriers and wells produced by layering III-V semiconductors
with different conduction band energies. The width of the single barrier is either
2nm or 3nm depending on devices. The width of the wells is either 6nm or 9nm.
The doped layers surrounding wells allow electrons to flow to the wells. These
layers are then connected by gold wire to soldered contacts with copper wire to
our measuring equipment.

appropriate boundary conditions we get the transmission coefficient as:

T =

[

1+
V 2

0

4E(V0−E)
sinh2(kb)

]−1

(1)

where k =
√

2m∗(V0−E)

h̄2 , V0 is the barrier height, b is the barrier width, E is the
energy of the electron, and m∗ is the effective mass of the electron. In the limit
kb >> 1, sinhkb → 1

2ekb so Equation 1 becomes:

T =
16(V0 −E)

V 2
0

Ee−2kb (2)

since e2kb
>> 1. In the low bias limit, V0 >> E, so we can simplify Equation 2

further to T ≈ 16E
V0

e−2kb.
Now the current density is given by J =

R

T (E)g(E) f (E)dE where g(E) is the
density of state and f (E) is the Fermi function. The density of state is proportional
to E

1
2 . The Fermi function can be taken as unity from zero energy up to the

maximum Fermi energy, E f , at which all the states are filled, and zero beyond
E f . This is only strictly true at absolute zero, and at finite temperatures the step
at E f is somewhat blurred so that there are some states above the Fermi energy,
and correspondingly fewer below it due to thermal excitation. However, we will
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Figure 2: With a voltage across it, the barrier behaves as shown, and now has an
effective height of V0 − eVa

2

take the situation at 0K as a first approximation. Substituting all of this into the
integral we get:

J = const × e−2kb
Z E f

0
E

3
2 dE = const × e−2kb (3)

because E f is a constant of the semiconductor. Now when we apply a voltage
across the barrier, we effectively raise the potential of one side of the barrier with
respect to the other, and so lower the height (energy) of the barrier by eVa

2 , where Va

is the applied voltage. This is summarised in Figure 2. Hence the energy of elec-
trons effectively becomes E + eVa

2 , and the expression for k in Equation 1 becomes
√

2m∗

h̄2 (V0 −E − eVa
2 ). Taking the natural logarithm of both side of Equation 3, and

substituting in the equation for k, and taking V0 −E ≈V0, we obtain:

lnJ = ln(const)−2

√

2m∗

h̄2

(

V0 −
eVa

2

)

b (4)

Since the current, I, is proportional to the current density, J, we can plot ln I

vs
√

V0 − eVa
2 to obtain a straight line with a gradient of 2

√

2m∗

h̄2 b.
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2.2 Experiments

We used two types of barriers, one of which had a nominal width of 2nm and the
other 3nm. The barrier itself is a layer of intrinsic AlAs semiconductor, sandwich
between two layers of intrinsic GaAs. Outside these layers are layers of GaAs
doped with silicon, to provide a conduction path to the quantum barrier. These
doped layers are connected by gold wire to soldered contacts with the copper wire
which connect the devices to voltmeters. The devices also had variable areas of
semiconductor layers. These came in two sets - 10×10, 14×14 and 20×20 µm,
and 30×30, 40×40 and 50×50 µm.

A sine wave signal varying from -2V to +2V at 10kHz was passed through
the barrier. The voltmeters measured the voltage at the signal generator, Va, and
across a known resistance in series with the barrier, from which the current was
calculated. This resistor was choosen so that the devices would not burn out, but
would give high enough resolution in the results. It was found that 100Ω and 1kΩ
resistors worked well.

Figure 3 show the results for the wider, 3nm, barrier. The graphs do not show
exact straight lines, but we only expect such behavior in the low bias limit, that
is in the bottom right corner of the graphs. It is then from this region that we
obtained the slope of the graphs, and hence an estimate of the barrier width, as
shown in Figure 4.

We made similar calculations for the narrow barrier, of nominal width 2nm,
but a lack of working devices meant we only obtained an estimate of 4±1nm for
the 14×14µm wafer. These result approach close to the nominal width, but there
tends to be an overestimate with the larger sized wafers, and an under estimate
with the smaller area ones. This may be due to the difference in the resistance of
different area wafers. We can see from Figure 5, that the slope of the I-V curve
increases with increasing area. Since the resistance is inversely proportional to the
slope, the larger the area of the device, the smaller resistance it has. This resistance
will alter our value of the applied voltage, Va in Equation 4, and hence our width
estimate. With the smaller area devices, the resistance will be higher, so we will

measure a higher voltage for a given current. So, as Va is larger,
√

V0 − eVa
2 , our

y-coordinates, become smaller, and we get a smaller, shallower slope. Since the
width, b, is proportional to the slope, we get a smaller width for smaller sized
devices.

In addition, we must also consider the doped layers on either side of the bar-
rier, since they will have their own resistances, and the contact resistance with
the connections to the voltmeters. When we measure Va, we are effectively mea-
suring the voltage across all of these components, rather than just across the bar-
rier, as we had assumed in the derivation above. Also, we have to consider the
effect of the two GaAs layer sandwiching the AlAs barrier. Although the con-
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Figure 3: The gradient of lower right part of this slope gives an estimate of the
barrier width. This is the 3nm barrier, and the key shows the areas of the semicon-
ductor layers, in microns. The horizontal areas arise due the lack of precission in
the voltmeter in measuring very small currents.

10×10 14×14 20×20
Least Slope 0.83nm 1.11nm 1.52nm
Greatest Slope 1.42nm 1.33nm 2.46nm
Average 1.1±0.3nm 1.2±0.1nm 2.0±0.5nm

30×30 40×40 50×50
Least Slope 5.63nm 1.82nm 5.3nm
Greatest Slope 7.91nm 3.02nm 11.5nm
Average 6±1nm 2.4±0.6nm 8±3nm

Figure 4: Estimated widths of the wide barrier. The error estimates are obtained
from comparing the greatest and least slopes.
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Figure 5: The I-V curves of the variously sized area wafers of the wide single
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duction band energy for GaAs is lower than AlAs, it is still higher than that of
the doped layers surrounding, so that electrons flowing through may still perceive
the doped/intrinsic GaAs contact as a potential barrier. This may cause us to over
estimate the true width of the barrier. With this many factors contributing to the
errors in the estimates of the barrier width, we nonetheless obtain values that are
within an order of magnitude of the nominal width. This demonstrates that Equa-
tion 4 is indeed correct, within limits, and hence our concepts of the physics of
the situation is applicable.

Finally, we consider the effects of temperature on the current-voltage be-
haviour of the single barrier. At high temperatures, such as room temperature,
we expect there to be more electron scattering, and hence higher resistance due to
thermal noise. Conversely we should see lower resistance at lower temperature.
So we immersed our devices in a bath of liquid nitrogen at 77K, and took mea-
surements as per the methods above. We found that the I-V altered as illustrated in
Figure 6, with the 77K curve being shallower than the room temperature one. This
means that it has a higher resistance, since resistance is inversely proportional to
slope, rather than lower as expected.

We know that in order to tunnel through, the electron needs to have a high
enough initial energy so that it will have a finite wavefunction at the other end of
the barrier, after exponentially decaying within the barrier. So the more electrons
we have at higher energy, the more will tunnel through and the higher our current,
and lower resistance. So it would seem that at 77K the effects of fewer high energy
electrons outweigh the effects of fewer phonon scattering in which the electrons
would loose energy, giving us a higher resistance at lower temperatures.

8



Figure 6: A graph showing the effects of temperature on the I-V characteristics of
a single barrier. The red curves represent roomt temperature, and the green ones
77K.
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3 Resonant Tunnelling Diodes

3.1 Theory

We now turn to the quantum well configuration, as shown in Figure 1. This config-
uration is used in a class of electronic devices called Resonant Tunnelling Diodes.
We can derive the probability that an electron will tunnel through the well by
applying its wavefunction to the well boundary conditions. It turns out that this
probability, or transmission coefficient T , depends on the transimission, TL for
the left and TR for the right barrier, and reflection coefficients, RL, and RR, of the
electron at each barrier, and the phase, φ of the wavefunction.

T =
TLTR

(1−
√

RLRR)2 +4
√

RLRRsin2(φ
2)

We can assume that the transimission and reflection coefficients is slowly vary-
ing with respect to energy, relative to the phase, and hence are approximately con-
stant. Therefore, the transimission will resonate when sin2(φ

2) is zero, or when
φ = 2nπ, giving a peak transmission of:

Tres =
TLTR

(1−
√

RLRR)2
≈

4TLTR

(TL +TR)2

Further, if the barriers around the well are identical, then TL = TR, so Tres will
be approximately unity. If we plot these resonant peaks on a transmission-energy
graph, we find that they coincide with the energy levels inside the well. Hence
the resonating case represents an electron which, once it tunnels into the well
has one of the permitted energies, and so will certainly be transmitted. Electrons
with different energy can only be transmitted if they loose (or gain) enough en-
ergy to enter one the allowed energy levels. They can do this through phonon or
defect scattering. Phonon scattering is important at high temperatures (including
room temperature) due to higher lattice vibrations, but at low temperatures, this is
largely damped, so the imperfections in the lattice become relatively more impor-
tant. As there are relatively fewer defects than phonons at the temperatures where
we see phonons, so in addition to the resonant peaks, we should find that as the
temperature (energy) increases, there is greater transmission, since there is more
phonons for the electrons to scatter off and loose energy, as shown in Figure 7

We can vary the energy of the electrons by varying the applied voltage across
the well, increasing the electron energy from E to E + eVa

2 as mentioned in Sec-
tion 2.1, where Va is the applied voltage. As the transmission coefficient is pro-
portional to the current, we should see a curve similar to Figure 7 in an I-V graph,
with the peak voltage, Vp corresponding to the energy levels of the well. That
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Figure 7: The transmission coefficient as a function of energy. The resonant peaks
correspond to allowed well energy levels. The general increase in T with energy
(temperature) is due to greater number of phonons for electrons to scatter off, to
enter the permitted energy levels.

is for the first peak, and energy level, E0 ≈ eVp
2 . Since E0 is small compared to

the well height, V0, we can approximate the well as one of infinite height, so the
energy levels are given by:

En =
(n+1)2π2 h̄2

2m0w2 (5)

where w is the well width.

3.2 Experiments

Using the same experimental setup as in Section 2, we measured the I-V charac-
teristics of three different wells. The first has a wide well, w = 9nm, with narrow
barriers at either end, b = 2nm. This gave a value of 0.17±0.01eV for the smaller
area device, and 0.31±0.2eV for the larger area device, compared with a theoret-
ical value of 0.13eV for E0. The difference between the theory and experimental
estimates may be due to how Vp was measured. We effectively measure the volt-
age across the well, its doped sandwhich layers and its contacts, rather than simply
across the well itself. Since each of the outer layers add their own resistance - es-
pecially the contacts - we measure a voltage that is higher than that across the well
only, and hence overestimate the energy level.
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Figure 8: Hysteresis in resonant tunnelling diodes. The hysteresis is more notica-
ble they larger the area of the device.

The narrower second well, with w = 6nm, and b = 2nm gave results of 2.1±
0.4eV, compared with a theoretical value of 0.3eV. This is much higher than even
contact resistance can account for. The well also exhibited some hysteresis, as
shown in Figure 8. The wide well also showed some hysteresis with the larger area
devices (40× 40 and 50× 50 microns), but it was much smaller. The hysteresis
loop seems to get larger with increasing size of device.

Since our estimate of the energy level, E0, in the well depends on the peak
voltage, Vp, which also increases as the hysteresis increases, then our estimates
appear to increase with increase area of device. However, the energy level is
quantised in the z-direction only, and is not affected by the x- and y-directions,
and hence the area. Therefore, this must be an artifact of the experiment.

Hysteresis occurs because we are not passing a direct current through the
diode, but rather a sine wave signal. This means the direction of current flow,
and bias alters each half cycle. If the frequency of the signal is higher than the
time for an electron to pass through the barrier, it becomes stuck in the barrier,
and then moves in the opposite direction as the bias changes sign. However, we
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can only have a finite number of electrons in the well in each energy level due to
Pauli exclusion. This means the electrons stuck in the well prevents other elec-
trons (from the reverse current) from entering the well, and hence reducing the
current on the return leg of the hysteresis curve.

3.3 Current-Voltage Characteristics

We now turn to the other I-V characteristics of the resonant tunnelling diode.
Figure 9 shows the I-V graph for a well with w = 6nm and b = 3nm. We see an
initial peak, before Vp, that in the figure appears as a step due to the poor resolution
of the voltmeter. This is due to the intrinsic GaAs layers sandwiching the AlAs
barriers. These layers also have a conduction band energy higher than that of the
surrounding doped layers, but lower than the AlAs barrier. Hence they appear as
barriers to the lower energy electrons from the doped layers, just as the AlAs is a
barrier to electrons from the GaAs layers. When we apply a bias across the device,
we pull down one side of this smaller barrier, and so cause a small quantum well,
with one side being the AlAs potential barrier, and the other barrier being the bias.
This well will have energy levels and hence resonant peaks in the current as well,
which is what we see.

The next noticable feature is a step after Vp. This is due to phonon scattering
as electrons from a higher state looses energy and fall to the ground state, and then
flow out of the well, and so maintain a current as the bias increase, even though
the chemical potential is now below the energy level, so no electrons can tunnel
through.

However, the most important feature of the graph is the Peak to Valley ratio
after the negative differential resistance, which would determine the use that the
diode can be put to in electronics. We found that the peak to valley ratio increased
at lower temperatures. This is because there will be less excitation at lower tem-
peratures, and so fewer electrons flowing after the chemical potential passes below
the ground state of the well. Hence the current after Vp will be lower.
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Figure 9: A current-voltage plot for a resonant tunnelling diode. The device used
has a well width of 6nm, the surround barriers are 3nm wide, and the area of the
layers is 20×20 micron.
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